Inhibition of A2aR by AZD4635 induces anti-tumor immunity alone and in combination with anti-PDL-1 in preclinical models

Alexandra Borodovsky1, Yanjun Wang1, Minwei Ye1, Nanhua Deng1, Joseph C Shaw1, Kris Sachsenmeier1, Kelly Goodwin1, James D Clarke1, Richard Goodwin1, Nicole Strittmatter1, Carl Hay2, Vasu Sah1, Deborah Lawson1, Corinne Reimer1, Miles Congreve3, Jon S Mason3, Fiona H Marshall3, Paul Lyne1, Rich Woessner1

1AZ IMED Biotech Unit, Boston, MA USA, 2MedImmune, Gaithersburg, MD USA, 3Heptares Therapeutics Ltd, Welwyn Garden City, Hertfordshire, UK

Abstract

Adenosine signaling through the high affinity adenosine 2A receptor (A2aR) on immune cells elicits a range of immunosuppressive effects which can promote tumor growth and limit the effectiveness of immune-mediated anti-tumor responses. AZD4635 (HTL-1071) is a potent and selective oral A2aR antagonist, currently in a Phase 1 clinical trial as a single agent and in combination with durvalumab (anti-PD-L1 Ab) in patients with solid malignancies. In T cell IFNγ secretion assay, the EC50 of AZD4635 is dependent on adenosine concentrations however, full understanding of the impact on adenosine on AZD4635 mediated anti-tumor responses requires characterization of intratumoral adenosine concentration and spatial heterogeneity. Using a novel LC/MS based method, measurement of intratumoral adenosine concentrations in a panel of syngeneic tumor models demonstrated a wide range of adenosine levels. Additionally, measurement of intratumoral adenosine by DESI-MS demonstrated that adenosine levels are spatially heterogeneous. The therapeutic benefit of A2aR blockade alone and in combination with anti-PD-L1 was evaluated in syngeneic mouse tumor models with varying adenosine concentrations. Treatment with AZD4635 alone and in combination with an anti-PD-L1 Ab led to a reduction in tumor growth in both adenosine high and adenosine low syngeneic tumor models. Tumors harvested from the treated mice exhibited increases in intratumoral T cell infiltration and increases in expression of co-stimulatory molecules on APCs. These results demonstrate that AZD4635 is a potent and selective A2aR inhibitor, and that blockade of A2aR signaling with an inhibitor such as AZD4635 can reduce tumor burden and enhance antitumor immunity as a single agent and in combination with an anti-PD-L1 antibody in preclinical tumor models.

Introduction

• Accumulation of extracellular adenosine within the microenvironment is a strategy exploited by tumors to escape immune surveillance.
• Adenosine signaling through the high affinity adenosine 2A receptor (A2aR) on immune cells elicits a range of immunosuppressive effects.
• Blockade of the A2aR receptor can reverse adenosine mediated immune suppression to enhance anti-tumor immunity

Results

AZD4635 reverses adenosine mediated T cell suppression. EC50 (μM) of AZD4635 in a mouse CD8+ T cell IFNγ secretion assay. The EC50 of AZD4635 for reversal of NECa-mediated suppression of IFNγ secretion were determined across a range of NECA concentrations. The activity was calculated as (% Sample Data – Blank) / (Untreated Data - Blank)*100. EC50 was calculated as the compound concentration that gave half-maximal response. Error bars represent SD.

AZD4635 exhibits antitumor activity in an increase in expression of co-stimulatory molecules in an adenosine high syngeneic tumor model. The therapeutic benefit of A2aR blockade in an adenosine high model was evaluated inestablished MC38 syngeneic colorectal cancer in combination with anti-PD-L1 (IgG2). Inhibition of A2aR signaling by AZD4635 led to a reduction in tumor growth alone and in combination with anti-PD-L1 as well as increased expression of co-stimulatory markers (CD86) and markers of antigen presentation (MHCIi) on dendritic cells and macrophages after 14 days of dosing (error bars represent SEM, *p<0.05).

AZD4635 exhibits dose dependent tumor growth inhibition, and inhibition is abrogated in immune deficient animals. AZD4635 led to a dose dependent reduction in tumor burden in combination with anti-PD-L1 (IgG1 D265A) in established MC38 syngeneic fibrosarcoma tumors (left panel). To confirm the immune mediated mechanism, immune deficient NOD scid IL2Rgamma-/- (NSG) mice were implanted with subcutaneous MC38 tumors and treated with AZD4635 and anti-PD-L1 (D265A). The anti-tumor activity was completely abrogated in NSG mice, confirming the immune mediated mechanism of tumor growth inhibition (right panel). Error bars represent SEM, *p<0.05.

Conclusions

• AZD4635 (HTL-1071) is an oral A2aR antagonist that reverses adenosine mediated T cell suppression.
• Total adenosine levels are high and spatially heterogeneous within syngeneic tumors. Spatial overlap of adenosine concentration and immune cell distribution is required to inform AZD4635 target coverage. Further exploration of target engagement by AZD4635 is ongoing.
• Treatment with AZD4635 alone and in combination with an anti-PD-L1 Ab led to a reduction in tumor growth in both adenosine high and adenosine low syngeneic tumor models.
• Inhibition of A2aR signaling by AZD4635 led to an increase in expression of co-stimulatory markers on APCs and increased intratumoral infiltration of CD8+T cells in combination with anti-PD-L1.
• AZD4635 is currently in a Phase 1 clinical trial as a single agent and in combination with durvalumab (anti-PD-L1 Ab) in patients with solid malignancies (NCT02740885).