Discovery of Pre-Clinical Candidate Calcitonin Gene-Related Peptide (CGRP) Receptor Antagonist HTL0022562

John Christopher
20th SCI/RSC Medicinal Chemistry Symposium
Japan-listed biotech with **state-of-the-art R&D center in the UK**

R&D CENTER
CAMBRIDGE, UK

~120 EMPLOYEES

- Proprietary StaR®¹ GPCR technology underpin
- Research, Drug Discovery and SBDD² Platform
- Translational and Early-Stage Clinical Development Expertise
- Business Development

HEADQUARTERS
TOKYO, JAPAN

~30 EMPLOYEES

- Late-Stage Japanese Development Expertise
- Access to Capital and also Royalty Income from Novartis

Japan-anchored, with a fully integrated global discovery and development business in Cambridge, UK, driving enhanced science, productivity, and collaboration and partnership opportunities

¹ Stabilized receptor technology
² Structure-based drug design

Sosei Group Corporation
TSE: 4565
We are the **world leader** in GPCR drug discovery and development

WE ARE RECOGNIZED GLOBALLY FOR

WORLD-CLASS, PIONEERING SCIENCE

- Solved 260+ Molecular structures
- From 25+ Different GPCRs
- Solved >30% Structures of GPCR targets

OUR TECHNOLOGY HAS ATTRACTED

WORLD LEADING PHARMA AND BIOTECHS **AS KEY PARTNERS**

- Novartis
- AstraZeneca
- Pfizer
- Pfizer
- Allergan
- Takeda
- Genentech
- Daiichi-Sankyo
- Kymab
- Morphosys

COLLABORATIONS WITH LEADING ACADEMIC GROUPS **KEEP US AT THE CUTTING EDGE OF SCIENTIFIC RESEARCH**

- Imperial College London
- University of Cambridge
- University of Glasgow
- NYU
- UCL

OUR CO-FOUNDER RICHARD HENDERSON **WAS AWARDED THE NOBEL PRIZE IN CHEMISTRY**

FORMED 2 SPIN-OUT COMPANIES

- Orexia
- INEXIA

PRODUCTS ON MARKET GLOBALLY

- 4

R&D PROGRAMS DISCLOSED WITH BROAD AND DEEP PIPELINE BEHIND

- 29
Our powerful **StaR® technology** enables better and smarter drug design

- Improved physiochemical properties (more polar, more selective, lower dosage)
- Better safety and efficacy
- Reduced clinical attrition
- Small molecule, peptide or antibody discovery

Our StaR®/SBDD platform capabilities allow us to develop better, differentiated drug candidates against emerging novel GPCR target mechanisms
CGRP Antagonists

- Family B GPCR
- CGRP Receptor is a complex of the calcitonin-like receptor (CLR), receptor activity modifying protein 1 (RAMP1)
 - Agonised by 37aa neuropeptide CGRP (Calcitonin Gene Related Peptide)
- Challenging target for small-molecule drug discovery
 - Binding site formed by N-terminal interaction of CLR with RAMP1
 - Ligands bind in an extended conformation; 18Å from HBD to hydrophobic hotspots
 - More like a protein-protein interaction target than a classical GPCR antagonist

Debbie L. Hay BJP (2018) 175, p3017
Scientific rationale for CGRP-receptor antagonism
Blocks multiple pain-related mechanisms associated with trigeminovascular system activation

Migraine “triggers” result in trigeminovascular system activation and release of CGRP leading to migraine pain

CGRP-receptor blockade leads to rapid pain relief/freedom

1. Reduction in arterial dilation
2. Reduction in neurogenic inflammation
3. Inhibition of pain transmission

Adapted from Ferrari et al. Lancet Neurol 2015. TG=trigeminal ganglion. PAG=periaqueductal gray. LC=locus coeruleus. TNC=trigeminal nucleus caudalis

Adapted from Edvinsson & Linde Lancet 2010
Competitive Landscape: CGRP Antagonists & mAbs (late 2013)

Olcegepant
CGRP pK$_b$ 11.2
MW 870, cLogP 3.3
PoC in acute migraine (iv)

Telcagepant
CGRP pK$_b$ 9.1
MW 567 cLogP 4.0
po, migraine prevention
(halted: DILI risk)

MK-3207
CGRP pK$_b$ 10.2
MW 558 cLogP 4.3
po, acute migraine
(halted: DILI risk)

BMS-742413
(BHV-3500)
CGRP pK$_b$ 10.5
MW 639 cLogP 2.9
Intranasally delivered PCC

BMS-927711
(rimegepant)
CGRP pK$_b$ 10.0
MW 535 cLogP 3.7
po, Phase II
Migraine is a huge global market, with room for multiple players and modalities

- (>5B USD 2022 Forecast (Source GLS))
- Clinically validated mechanism for migraine, potential to extend to other indications
 - e.g. Emgality FDA ‘Breakthrough Therapy’ - episodic cluster headache
- Three CGRP mAbs approved for migraine prophylaxis
 - Small molecules are entering this space as well
- NDA filings anticipated 2019 for Ubrogepant, Rimegepant, 2020 Atogepant

Competitive Landscape: CGRP Antagonists & mAbs (2019)

<table>
<thead>
<tr>
<th>Company</th>
<th>Modality</th>
<th>Name</th>
<th>Indication</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amgen</td>
<td>S/C mAb*</td>
<td>Erenumab (Aimovig)</td>
<td>Prophylaxis</td>
<td>FDA Approved</td>
</tr>
<tr>
<td>Teva</td>
<td>S/C mAb</td>
<td>Fremanezumab (AJOVY)</td>
<td>Prophylaxis</td>
<td>FDA Approved</td>
</tr>
<tr>
<td>Alder</td>
<td>IV mAb</td>
<td>Eptinezumab</td>
<td>Prophylaxis</td>
<td>Phase 3 +ve; BLA under review</td>
</tr>
<tr>
<td>Lilly</td>
<td>S/C mAb</td>
<td>Galcanezumab (Emgality)</td>
<td>Prophylaxis</td>
<td>FDA Approved</td>
</tr>
<tr>
<td>Allergan</td>
<td>Oral SME</td>
<td>Ubrogepant</td>
<td>Acute</td>
<td>Phase 3 +ve; NDA under review</td>
</tr>
<tr>
<td>Biohaven</td>
<td>Oral SME</td>
<td>Rimegepant</td>
<td>Acute</td>
<td>Phase 3 +ve; NDA expected in 2019</td>
</tr>
<tr>
<td>Allergan</td>
<td>Oral SME</td>
<td>Atogepant</td>
<td>Prophylaxis</td>
<td>Phase 2b +ve; Phase 3 initiated</td>
</tr>
<tr>
<td>Biohaven</td>
<td>IN SME</td>
<td>BMS-742413/BHV-3500</td>
<td>Acute</td>
<td>Phase 2/3; topline data expected Q4/2019</td>
</tr>
</tbody>
</table>

Anti-CGRP agents currently in clinical development/recently licensed

- **ubrogepant**
 - CGRP pK_b 10.3
 - MW 550 cLogP 2.9
- **rimegepant**
 - CGRP pK_b 10.8
 - MW 604 cLogP 3.3
CGRP Structural Biology: Beyond Ro5 opportunity

• Public domain (Vertex, 2010) structures of ligands bound to the CGRP ectodomain are enabling for SBDD discovery
 • Stable, functional, binary complex of CLR N-terminal domain and RAMP1
 • Structures of olcegepant and telcagepant published
 • Approach subsequently leveraged by Heptares for in-house crystallography and SPR to support lead optimization
 - Multiple in-house crystal structures of literature ligands & Sosei Heptares chemotypes generated to support SBDD
 - Vectors exploitable to drive to high potency and solubility

Olcegepant
CGRP pKᵢ 11.2
MW 870, cLogP 3.3
PoC in acute migraine (iv)

ter Haar et al, Structure, 2010, 18, 1083-1090 (Vertex)
Beyond Ro5 opportunity: Target Product Profile

• Key opportunity: potential for highly differentiated profile to oral competitors
 • Physicochemical properties: drive to highly soluble, polar antagonists – DILI de-risk
 • Potential for superior efficacy and speed on onset relative to oral gepants
 – Optimise PK profile – low plasma protein binding, high C_{max} and relatively short T_{max} via s/c administration
 – Yielding very high and rapid receptor occupancy
 • Low Dose Potential
 – Appropriate physicochemical and PK properties combined with high potency to afford low human dose

• Target Product Profile
 • An agent suitable for use in the full spectrum of non-oral delivery technologies for acute treatment / rescue of migraine headache pain
 – Intranasal
 – Inhaled
 – Sub-cutaneous / needleless injection
 • An ideal molecule might also be delivered by oral or sub-lingual delivery
Sosei Heptares X-ray structure: telcagepant (2.1Å)
Sosei Heptares X-ray structure: olcegepant (1.7Å)
Design Strategy: Beyond Ro5

• Optimise H-bond donor/acceptor interactions
• Optimise hydrophobic pocket interactions
 • Exploit groups from headline clinical compounds, literature & SBDD
• Exploit one or both vectors to drive to very high potency and solubility
 • Targeting rapid, very high receptor occupancy
 • Potential efficacy advantage

Series 1 Example: Non amino acid linked

Series 2 Example: Amino acid linked
SBDD Approach Yielded Two Complementary Series

Series 1: non amino acid linked
- CGRP pKᵢ 10.0
- CGRP pKᵢ 9.3
- TD solubility > 1450 µM
- r Hep Clᵢₑ < 2
- Rat iv Cl 14 mL/min/kg

Series 2: amino acid linked
- CGRP pKᵢ 10.4
- CGRP pKᵢ 10.8
- TD solubility > 800 µM
- r/h Hep Clᵢₑ < 2
- Rat iv Cl 29 mL/min/kg
Series 1 and Series 2 Affinity Comparisons

- Modular chemistry enabled rapid evaluation of both Series 1 & Series 2 chemotype
 - Both amenable to high LE, LLE compounds
 - Typically with excellent thermodynamic solubility
 - Usually with excellent in-vitro hepatocyte stability
 - Rarely any P450 or hERG flags

- In-vivo rat iv PK and SPR receptor kinetics helped to triage molecules & prioritise for:
 - Further in-vitro profiling, e.g. broader off target selectivity screening
 - Scale up & cross-species PK
SPR Kinetics Aided Differentiation Between Series

- Opportunistically, the modified Sosei Heptares ectodomain crystallography construct provided stable protein for routine monitoring of ligand kinetics by SPR
 - Rank order of receptor-ligand half-lives for standards in accordance with literature radioligand binding kinetics
 - Series 1 typically exhibited shorter receptor kinetic profiles than Series 2
 - Working hypothesis – due to interaction of additional vector in Series 2 with Asp71

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lit (t_{1/2}) min (RLB)</th>
<th>(t_{1/2}) min (SPR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>olcegepant</td>
<td>357</td>
<td>62</td>
</tr>
<tr>
<td>MK-3207</td>
<td>59</td>
<td>27</td>
</tr>
<tr>
<td>BMS-742413</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>telcagepant</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td>Series 1 Example</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>HTL0022562</td>
<td>-</td>
<td>65</td>
</tr>
</tbody>
</table>

![Graphs of olcegepant and HTL0022562 kinetics](image)
HTL0022562 Candidate Profile: in-vitro

Pharmacology (human)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hu CGRP pK<sub>i</sub></td>
<td>10.4</td>
</tr>
<tr>
<td>hu CGRP pK<sub>b</sub></td>
<td>10.2</td>
</tr>
<tr>
<td>Amylin pK<sub>b</sub></td>
<td>< 6.3</td>
</tr>
<tr>
<td>Adrenomedullin pK<sub>b</sub></td>
<td>< 5.7</td>
</tr>
</tbody>
</table>

Pharmacology (cross species)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rat CGRP pK<sub>b</sub></td>
<td>< 7.0</td>
</tr>
<tr>
<td>cyno CGRP pK<sub>i</sub></td>
<td>11.3</td>
</tr>
<tr>
<td>cyno CGRP pK<sub>b</sub></td>
<td>10.5</td>
</tr>
<tr>
<td>dog CGRP pK<sub>b</sub></td>
<td>7.1</td>
</tr>
</tbody>
</table>

In Vitro Profile

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MW, Log D</td>
<td>763, -0.4<sup>a</sup></td>
</tr>
<tr>
<td>HEP Cl<sub>int</sub></td>
<td>All < 2</td>
</tr>
<tr>
<td>hERG pIC<sub>50</sub></td>
<td>< 4.5</td>
</tr>
<tr>
<td>CYP inhibition</td>
<td>pIC<sub>50</sub> < 4.3<sup>b</sup> Clean<sup>c</sup></td>
</tr>
<tr>
<td>PPB %</td>
<td>36, 41, 23, 31</td>
</tr>
<tr>
<td>Permeability MDCK<sup>d</sup></td>
<td>0.8, < 0.3</td>
</tr>
<tr>
<td>Broad Selectivity</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Safety</td>
<td>AMES clean GSH clean</td>
</tr>
</tbody>
</table>

^a Measured, ^b 1A2, 2C8, 2C9, 2C19, 2D6, 3A4, ^c PXR/ARX induction 2.4, 1.1 fold respectively, ^d P_{app} AB 10⁻⁶ cm/s, WT, MDR1
HTL0022562 Candidate Profile: in vivo PK

Rat discrete PK

<table>
<thead>
<tr>
<th>Route</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>iv 2 mg/kg</td>
<td>Cl (mL/min/kg)</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Vss (L/kg)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>t1/2 (h)</td>
<td>4.7</td>
</tr>
<tr>
<td>sc 1 mg/kg</td>
<td>t1/2 (h), Tmax (h)</td>
<td>2.6, 0.7</td>
</tr>
<tr>
<td></td>
<td>AUCinf (ng*h/mL)</td>
<td>1285</td>
</tr>
<tr>
<td></td>
<td>F %</td>
<td>~ 100</td>
</tr>
</tbody>
</table>

Cyno discrete PK

<table>
<thead>
<tr>
<th>Route</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>iv 0.5 mg/kg</td>
<td>Cl (mL/min/kg)</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Vss (L/kg)</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>t1/2 (h)</td>
<td>1.2</td>
</tr>
<tr>
<td>sc 0.5 mg/kg</td>
<td>t1/2 (h), Tmax (h)</td>
<td>3.6, 0.8</td>
</tr>
<tr>
<td></td>
<td>AUCinf (ng*h/mL)</td>
<td>4207</td>
</tr>
<tr>
<td></td>
<td>F %</td>
<td>68</td>
</tr>
</tbody>
</table>

- Low predicted human efficacious dose of 2 mg, sc
 - >EC_{99.6} values for ~4 hrs post dose
 - >EC_{99} values for ~9 hrs post dose
 - >EC_{90} values for ~20 hrs post dose

- High potency and physiochemical properties compatible with other parenteral delivery routes that can deliver rapid systemic exposures
 - E.g. Pulmonary (PUL), intranasal (IN), sublingual (SL)

Predicted human PK profile for HTL0022562, 2mg sc
HTL0022562: Differentiated Physicochemical Properties
Potential to deliver a rapid onset of action at the site of action

<table>
<thead>
<tr>
<th></th>
<th>HTL0022562</th>
<th>Rimegepant</th>
<th>Ubrogepant</th>
<th>Atogepant</th>
<th>Telcagepant</th>
<th>MK-3207</th>
</tr>
</thead>
<tbody>
<tr>
<td>pKb</td>
<td>10.3</td>
<td>10.0</td>
<td>10.4</td>
<td>10.8</td>
<td>9.1</td>
<td>10.2</td>
</tr>
<tr>
<td>SPR t½ (min)†</td>
<td>68</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>clogP</td>
<td>1.3</td>
<td>3.7</td>
<td>2.9</td>
<td>3.3</td>
<td>4.0</td>
<td>4.4</td>
</tr>
<tr>
<td>sol (μg/ml)</td>
<td>1944.0</td>
<td>2.8</td>
<td>57.0</td>
<td>3.6</td>
<td><1</td>
<td>1.5</td>
</tr>
<tr>
<td>hPPB (%)</td>
<td>35.7</td>
<td>93.2</td>
<td>94.5</td>
<td>97.1</td>
<td>94.7</td>
<td>ND</td>
</tr>
</tbody>
</table>

- Differentiated physicochemical profile of HTL0022562 offers potential advantages over other gepants
 - High binding affinity (fast-on, slow-off rate)
 - Low plasma protein binding
 - High solubility

- Low predicted efficacious exposures amenable to delivery routes that will drive rapid systemic distribution

Surface Plasma Resonance derived receptor residency half-life (t½), reference data olcegepant t½ = 62 min. ND, not determined
HTL0022562: Target Product Profile

• Target Product Profile
 • An agent suitable for use in the full spectrum of non-oral delivery technologies for acute treatment / rescue of migraine headache pain
 - Intranasal
 - Inhaled
 - Sub-cutaneous / needleless injection
 • An ideal molecule might also be delivered by oral or sub-lingual delivery

• Desired TPP achieved with HTL0022562
 • Agent suitable for multiple routes of administration
 • Anticipated clinical start 2020
 • Clinical plans will be detailed at a later date
Summary: HTL0022562
Highly differentiated molecule, preclinically, for the treatment of Migraine

- Olcegepant: pK_i 10.5, pK_b 11.2
 - Dosed IV
 - Short $t_{1/2}$

- Example 2: pK_i 10.2, pK_b 10.8
 - Improved $t_{1/2}$
 - Slow kinetics

- HTL0022562: pK_i 10.5, pK_b 10.2
 - Optimised PK
 - Slow kinetics

- Currently in late-stage pre-clinical development; anticipated clinical trial start 2020
Acknowledgements

Sosei Heptares
John Christopher
Matt Barnes
Mike Bestwick
Alastair Brown
Giles Brown
Jason Brown
Sarah Bucknell
Andrew Cansfield
Julie Cansfield
Miles Congreve
Rob Cooke

Gabrielle Cseke
Francesca DeFlorian
Kerry O’Hare
Christopher Jones
Fiona Marshall
Al O’Brien
Mark Pickworth
Stacey Southall
Steve Watson
Malcolm Weir

Teva
Greg Ott
Mark Ator
Rebecca Casaubon
Ben Dugan
Dave Favor
Karen Milkiewicz

Fidelta, GVK, Jubilant
Disclaimer

The material that follows is a presentation of general background information about Sosei Group Corporation and its subsidiaries (collectively, the “Company”) as of the date of this presentation. This material has been prepared solely for informational purposes and is not to be construed as a solicitation or an offer to buy or sell any securities and should not be treated as giving investment advice to recipients. It is not targeted to the specific investment objectives, financial situation or particular needs of any recipient. It is not intended to provide the basis for any third party evaluation of any securities or any offering of them and should not be considered as a recommendation that any recipient should subscribe for or purchase any securities.

The information contained herein is in summary form and does not purport to be complete. Certain information has been obtained from public sources. No representation or warranty, either express or implied, by the Company is made as to the accuracy, fairness, or completeness of the information presented herein and no reliance should be placed on the accuracy, fairness, or completeness of such information. The Company takes no responsibility or liability to update the contents of this presentation in the light of new information and/or future events. In addition, the Company may alter, modify or otherwise change in any manner the contents of this presentation, in its own discretion without the obligation to notify any person of such revision or changes.

This presentation contains “forward-looking statements,” as that term is defined in Section 27A of the U.S. Securities Act of 1933, as amended, and Section 21E of the U.S. Securities Exchange Act of 1934, as amended. The words “believe”, “expect”, “anticipate”, “intend”, “plan”, “seeks”, “estimates”, “will” and “may” and similar expressions identify forward looking statements. All statements other than statements of historical facts included in this presentation, including, without limitation, those regarding our financial position, business strategy, plans and objectives of management for future operations (including development plans and objectives relating to our products), are forward looking statements. Such forward looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by such forward looking statements. Such forward looking statements are based on numerous assumptions regarding our present and future business strategies and the environment in which we will operate in the future. The important factors that could cause our actual results, performance or achievements to differ materially from those in the forward looking statements include, among others, risks associated with product discovery and development, uncertainties related to the outcome of clinical trials, slower than expected rates of patient recruitment, unforeseen safety issues resulting from the administration of our products in patients, uncertainties related to product manufacturing, the lack of market acceptance of our products, our inability to manage growth, the competitive environment in relation to our business area and markets, our inability to attract and retain suitably qualified personnel, the unenforceability or lack of protection of our patents and proprietary rights, our relationships with affiliated entities, changes and developments in technology which may render our products obsolete, and other factors. These factors include, without limitation, those discussed in our public reports filed with the Tokyo Stock Exchange and the Financial Services Agency of Japan. Although the Company believes that the expectations and assumptions reflected in the forward-looking statements are reasonably based on information currently available to the Company’s management, certain forward looking statements are based upon assumptions of future events which may not prove to be accurate. The forward looking statements in this document speak only as at the date of this presentation and the company does not assume any obligations to update or revise any of these forward statements, even if new information becomes available in the future.

This presentation does not constitute an offer, or invitation, or solicitation of an offer, to subscribe for or purchase any securities. Neither this presentation nor anything contained herein shall form the basis of any contract or commitment whatsoever. Recipients of this presentation are not to construe the contents of this summary as legal, tax or investment advice and recipients should consult their own advisors in this regard.

This presentation and its contents are proprietary confidential information and may not be reproduced, published or otherwise disseminated in whole or in part without the Company’s prior written consent. These materials are not intended for distribution to, or use by, any person or entity in any jurisdiction or country where such distribution or use would be contrary to local law or regulation.

This presentation contains non-GAAP financial measures. The non-GAAP financial measures contained in this presentation are not measures of financial performance calculated in accordance with IFRS and should not be considered as replacements or alternatives profit, or operating profit, as an indicator of operating performance or as replacements or alternatives to cash flow provided by operating activities or as a measure of liquidity (in each case, as determined in accordance with IFRS). Non-GAAP financial measures should be viewed in addition to, and not as a substitute for, analysis of the Company’s results reported in accordance with IFRS.

References to “FY” in this presentation for periods prior to 1 January 2018 are to the 12-month periods commencing in each case on April 1 of the year indicated and ending on March 31 of the following year, and the 9 month period from April 1 2017 to December 31 2017. From January 1 2018 the Company changed its fiscal year to the 12-month period commencing in each case on January 1. References to “FY” in this presentation should be construed accordingly.

Sosei Heptares is a trading name. Sosei and the logo are Trade Marks of Sosei Group Corporation, Heptares is a Trade Mark of Heptares Therapeutics Limited. StaR is a Trade Mark of Heptares Therapeutics Limited.
Locations

SOSEI HEPTARES

PMO Hanzomon 11F
2-1 Kojimachi, Chiyoda-ku
Tokyo 102-0083
Japan

Steinmetz Building
Granta Park, Cambridge
CB21 6DG
United Kingdom

North West House
119 Marylebone Road
London NW1 5PU
United Kingdom